Skip to content

A data set containing information of a subset of the elevators in NYC. The data set has been filtered to contain active elevators with non-missing speed.

Usage

data_elevators(...)

Arguments

...

Arguments passed to pins::pin_read().

Value

tibble

Details

device_number

Unique identify number for the elevator

bin

Building Identification Number

borough

Regional subdivisions of NYC. One of "Manhattan", "Bronx", "Brooklyn", "Queens", or "Staten Island"

tax_block

Id for tax block. Smaller than borough

tax_lot

Id for tax block. Smaller than tax_block

house_number

House number, very poorly parsed. Use with caution

street_name

Street name, very poorly parsed. Use with caution

zip_code

Zip code, formatted to 5 digits. 0 and 99999 are marked as NA

device_type

Type of device. Most common type is "Passenger Elevator"

lastper_insp_date

Date, refers to the last periodic inspection by the Department of Buildings. These dates will no longer be accurate, as they were collected by November 2015

approval_date

Date of approval for elevator

manufacturer

Name of manufacturer, poorly cleaned. Most assigned NA

travel_distance

Distance travelled, not cleaned. Mixed formats

speed_fpm

Speed in feet/minute

capacity_lbs

Capacity in lbs

car_buffer_type

Buffer type. A buffer is a device designed to stop a descending car or counterweight beyond its normal limit and to soften the force with which the elevator runs into the pit during an emergency. Takes values "Oil", "Spring", and NA

governor_type

Governor type, An overspeed governor is an elevator device which acts as a stopping mechanism in case the elevator runs beyond its rated speed

machine_type

Machine type, labels unknown.

safety_type

Safety type, labels unknown.

mode_operation

Operation mode, labels unknown.

floor_from

Lowest floor, not cleaned. Mixed formats

floor_to

Highest floor, not cleaned. Mixed formats

latitude

Latitude of elevator

longitude

Longitude of elevator

elevators_per_building

number of elevators in building

...

tibble print

data_elevators()
#> # A tibble: 35,042 x 25
#>    device_number bin     tax_block tax_lot house_number street_name     zip_code
#>    <chr>         <chr>   <chr>     <chr>   <chr>        <chr>           <chr>   
#>  1 1D10028       1024795 1021      26      1614         BROADWAY        10019   
#>  2 1D10094       1041822 1392      25      53           E 77TH ST       10021   
#>  3 1D10097       1038223 1323      1       201          E 49 ST         10017   
#>  4 1D10146       1080443 1274      6       40           CENTRAL PARK S~ <NA>    
#>  5 1D10200       1085777 1074      24      651          TENTH AVENUE    <NA>    
#>  6 1D10301       1002075 181       16      179          FRANKLIN STREET 10013   
#>  7 1D10302       1010518 606       4       121          WEST 10 STREET  10011   
#>  8 1D10303       1085955 1329      1       915          3 AVENUE        10022   
#>  9 1D10304       1044058 1430      5       220          E. 76 ST        10021   
#> 10 1D10305       1087468 1951      4       133          MORNINGSIDE AV~ <NA>    
#> # i 35,032 more rows
#> # i 18 more variables: borough <fct>, device_type <chr>,
#> #   lastper_insp_date <date>, approval_date <date>, manufacturer <chr>,
#> #   travel_distance <chr>, speed_fpm <dbl>, capacity_lbs <dbl>,
#> #   car_buffer_type <chr>, governor_type <chr>, machine_type <chr>,
#> #   safety_type <chr>, mode_operation <chr>, floor_from <chr>, floor_to <chr>,
#> #   latitude <dbl>, longitude <dbl>, elevators_per_building <int>

glimpse()

tibble::glimpse(data_elevators())
#> Rows: 35,042
#> Columns: 25
#> $ device_number          <chr> "1D10028", "1D10094", "1D10097", "1D10146", "1D~
#> $ bin                    <chr> "1024795", "1041822", "1038223", "1080443", "10~
#> $ tax_block              <chr> "1021", "1392", "1323", "1274", "1074", "181", ~
#> $ tax_lot                <chr> "26", "25", "1", "6", "24", "16", "4", "1", "5"~
#> $ house_number           <chr> "1614", "53", "201", "40", "651", "179", "121",~
#> $ street_name            <chr> "BROADWAY", "E 77TH ST", "E 49 ST", "CENTRAL PA~
#> $ zip_code               <chr> "10019", "10021", "10017", NA, NA, "10013", "10~
#> $ borough                <fct> Manhattan, Manhattan, Manhattan, Manhattan, Man~
#> $ device_type            <chr> "Dumbwaiter", "Dumbwaiter", "Dumbwaiter", "Dumb~
#> $ lastper_insp_date      <date> 2015-09-18, 2015-08-07, 2015-04-02, 2014-10-15~
#> $ approval_date          <date> 2006-03-07, 2006-05-15, 1998-09-21, 2010-08-02~
#> $ manufacturer           <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ travel_distance        <chr> "16'4\"", NA, "23", "8'", "24 FT", "9'0", "12'0~
#> $ speed_fpm              <dbl> 50, 25, 50, 50, 50, 50, 50, 50, 50, 100, 100, 5~
#> $ capacity_lbs           <dbl> 500, 500, 500, 500, NA, 500, 300, 500, 500, 500~
#> $ car_buffer_type        <chr> "Spring", NA, NA, NA, NA, NA, "Spring", NA, NA,~
#> $ governor_type          <chr> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,~
#> $ machine_type           <chr> NA, "OD", "BD", "BD", NA, "OD", "OD", "BD", "OG~
#> $ safety_type            <chr> "I", NA, "I", NA, NA, "I", "I", NA, "I", NA, NA~
#> $ mode_operation         <chr> "A", "P", "A", "A", NA, "A", "A", "A", "A", "P"~
#> $ floor_from             <chr> "B", "SB", "B", "B", "C", "BAS", "B", "C", "BMT~
#> $ floor_to               <chr> "1", "3", "2", "1", "G", "1", "1", "2", "4", "5~
#> $ latitude               <dbl> 40.76088, 40.77502, 40.75518, 40.76500, 40.7622~
#> $ longitude              <dbl> -73.98391, -73.96256, -73.97079, -73.97573, -73~
#> $ elevators_per_building <int> 11, 2, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 2, 1, 1, 2~

Examples

# \donttest{
data_elevators()
#> # A tibble: 35,042 × 25
#>    device_number bin   tax_block tax_lot house_number street_name zip_code
#>    <chr>         <chr> <chr>     <chr>   <chr>        <chr>       <chr>   
#>  1 1D10028       1024… 1021      26      1614         BROADWAY    10019   
#>  2 1D10094       1041… 1392      25      53           E 77TH ST   10021   
#>  3 1D10097       1038… 1323      1       201          E 49 ST     10017   
#>  4 1D10146       1080… 1274      6       40           CENTRAL PA… NA      
#>  5 1D10200       1085… 1074      24      651          TENTH AVEN… NA      
#>  6 1D10301       1002… 181       16      179          FRANKLIN S… 10013   
#>  7 1D10302       1010… 606       4       121          WEST 10 ST… 10011   
#>  8 1D10303       1085… 1329      1       915          3 AVENUE    10022   
#>  9 1D10304       1044… 1430      5       220          E. 76 ST    10021   
#> 10 1D10305       1087… 1951      4       133          MORNINGSID… NA      
#> # ℹ 35,032 more rows
#> # ℹ 18 more variables: borough <fct>, device_type <chr>,
#> #   lastper_insp_date <date>, approval_date <date>, manufacturer <chr>,
#> #   travel_distance <chr>, speed_fpm <dbl>, capacity_lbs <dbl>,
#> #   car_buffer_type <chr>, governor_type <chr>, machine_type <chr>,
#> #   safety_type <chr>, mode_operation <chr>, floor_from <chr>,
#> #   floor_to <chr>, latitude <dbl>, longitude <dbl>, …
# }